Newly-identified receptors for peptide histidine-isoleucine and GHRH-like peptide in zebrafish help to elucidate the mammalian secretin superfamily

J Mol Endocrinol. 2008 Nov;41(5):343-66. doi: 10.1677/JME-08-0083. Epub 2008 Aug 29.

Abstract

A group of ten hormones in humans are structurally related and known as the secretin superfamily. These hormones bind to G-protein-coupled receptors that activate the cAMP pathway and are clustered as the secretin or B family. We used an evolutionary approach with zebrafish as a model to understand why some of these hormones, such as peptide histidine-methionine (PHM) and pituitary adenylate cyclase-activating polypeptide (PACAP)-related peptide (PRP) in humans lack a receptor. We used molecular techniques to clone two full-length receptor cDNAs in zebrafish, which were analyzed for amino acid sequence and ligand-binding motifs, phylogenetic position, synteny, tissue expression, functional response, and signaling pathway. Evidence is provided that the two cDNAs encoded the peptide histidine-isoleucine (PHI) receptor and PRP receptor, which is known as GHRH-like peptide (GHRH-LP) receptor in non-mammals. Further, we cloned a zebrafish cDNA encoding the peptides PHI and vasoactive intestinal peptide (VIP). The PHIR had been previously labeled as one type of a VIP-PACAP (VPAC2R) shared receptor based only on sequence data. The PHIR cDNA, transfected into COS7 cells, responded to zebrafish PHI in a sensitive and dose-dependent manner (EC(50)=1.8x10(-9) M) but not to PACAP and VIP. The GHRH-LP receptor responded to both zebrafish GHRH-LP1 and GHRH with a 3.5-fold greater response to the former. For comparison, two zebrafish receptors (PAC1R and VPAC1R) and two human receptors (VPAC2R and GHRHR) were tested with human and/or zebrafish peptides. Unexpectedly, zebrafish VIP activated its PAC1R suggesting that in evolution, PAC1R is not always a specific receptor for PACAP. We conclude that zebrafish, like goldfish, have a specific receptor for PHI and GHRH-LP. Our evidence that zebrafish PHI is more potent than human PHM in activating the human VPAC2R (EC(50)=7.4x10(-9) M) supports our suggestion that the VPAC2R and PHIR shared a common ancestral receptor.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Amino Acid Sequence
  • Animals
  • Base Sequence
  • Growth Hormone-Releasing Hormone / genetics
  • Growth Hormone-Releasing Hormone / metabolism*
  • Humans
  • Molecular Sequence Data
  • Peptide PHI / genetics
  • Peptide PHI / metabolism*
  • Peptides / genetics
  • Peptides / metabolism
  • Phylogeny
  • Receptors, Cell Surface / classification
  • Receptors, Cell Surface / genetics
  • Receptors, Cell Surface / metabolism*
  • Secretin / classification
  • Secretin / genetics
  • Secretin / metabolism*
  • Sequence Alignment
  • Tissue Distribution
  • Zebrafish / genetics
  • Zebrafish / metabolism*
  • Zebrafish Proteins / classification
  • Zebrafish Proteins / genetics
  • Zebrafish Proteins / metabolism

Substances

  • Peptide PHI
  • Peptides
  • Receptors, Cell Surface
  • Zebrafish Proteins
  • growth hormone releasing hormone-related peptide
  • Secretin
  • Growth Hormone-Releasing Hormone