Isolation of an isoenzyme of human glutaminyl cyclase: retention in the Golgi complex suggests involvement in the protein maturation machinery

J Mol Biol. 2008 Jun 20;379(5):966-80. doi: 10.1016/j.jmb.2008.03.078. Epub 2008 Apr 15.

Abstract

Mammalian glutaminyl cyclase isoenzymes (isoQCs) were identified. The analysis of the primary structure of human isoQC (h-isoQC) revealed conservation of the zinc-binding motif of the human QC (hQC). In contrast to hQC, h-isoQC carries an N-terminal signal anchor. The cDNAs of human and murine isoQCs were isolated and h-isoQC, lacking the N-terminal signal anchor and the short cytosolic tail, was expressed as a fusion protein in Escherichia coli. h-isoQC exhibits 10fold lower activity compared to hQC. Similar to hQC, h-isoQC was competitively inhibited by imidazoles and cysteamines. Inactivation by metal chelators suggests a conserved metal-dependent catalytic mechanism of both isoenzymes. A comparison of the expression pattern of m-isoQC and murine QC revealed ubiquitous expression of both enzymes. However, murine QC transcript formation was higher in neuronal tissue, whereas the amount of m-isoQC transcripts did not vary significantly between different organs. h-isoQC was exclusively localized within the Golgi complex, obviously retained by the N-terminus. Similar resident enzymes of the Golgi complex are the glycosyltransferases. Golgi apparatus retention implies a "housekeeping" protein maturation machinery conducting glycosylation and pyroglutamyl formation. For these enzymes, apparently similar strategies evolved to retain the proteins in the Golgi complex.

MeSH terms

  • Amino Acid Sequence
  • Aminoacyltransferases / chemistry
  • Aminoacyltransferases / genetics
  • Aminoacyltransferases / isolation & purification*
  • Aminoacyltransferases / metabolism*
  • Animals
  • Base Sequence
  • Cell Line
  • DNA, Complementary / genetics
  • Glycosylation
  • Golgi Apparatus / enzymology*
  • Humans
  • Isoenzymes / chemistry
  • Isoenzymes / genetics
  • Isoenzymes / isolation & purification
  • Isoenzymes / metabolism
  • Kinetics
  • Mice
  • Mice, Inbred C57BL
  • Molecular Sequence Data
  • Polymerase Chain Reaction
  • Protein Processing, Post-Translational
  • Protein Structure, Tertiary
  • Recombinant Proteins / chemistry
  • Recombinant Proteins / genetics
  • Recombinant Proteins / metabolism
  • Sequence Homology, Amino Acid
  • Subcellular Fractions / enzymology
  • Tissue Distribution

Substances

  • DNA, Complementary
  • Isoenzymes
  • Recombinant Proteins
  • Aminoacyltransferases
  • glutaminyl-peptide cyclotransferase