Nuclear factor-kappaB activated by capacitative Ca2+ entry enhances muscarinic receptor-mediated soluble amyloid precursor protein (sAPPalpha) release in SH-SY5Y cells

J Biol Chem. 2006 May 5;281(18):12722-8. doi: 10.1074/jbc.M601018200. Epub 2006 Feb 20.

Abstract

G(q/11) protein-coupled muscarinic receptors are known to regulate the release of soluble amyloid precursor protein (sAPPalpha) produced by alpha-secretase processing; however, their signaling mechanisms remain to be elucidated. It has been reported that a muscarinic agonist activates nuclear factor (NF)-kappaB, a transcription factor that has been shown to play an important role in the Alzheimer disease brain, and that NF-kappaB activation is regulated by intracellular Ca2+ level. In the present study, we investigated whether NF-kappaB activation plays a role in muscarinic receptor-mediated sAPPalpha release enhancement and contributes to a changed capacitative Ca2+ entry (CCE), which was suggested to be involved in the muscarinic receptor-mediated stimulation of sAPPalpha release. Muscarinic receptor-mediated NF-kappaB activation was confirmed by observing the translocation of the active subunit (p65) of NF-kappaB to the nucleus by the muscarinic agonist, oxotremorine M (oxoM), in SH-SY5Y neuroblastoma cells expressing muscarinic receptors that are predominantly of the M3 subtype. NF-kappaB activation and sAPPalpha release enhancement induced by oxoM were inhibited by NF-kappaB inhibitors, such as an NF-kappaB peptide inhibitor (SN50), an IkappaB alpha kinase inhibitor (BAY11-7085), a proteasome inhibitor (MG132), the inhibitor of proteasome activity and IkappaB phosphorylation, pyrrolidine dithiocarbamate, the novel NF-kappaB activation inhibitor (6-amino-4-(4-phenoxyphenylethylamino) quinazoline), and by an intracellular Ca2+ chelator (TMB-8). Furthermore, both oxoM-induced NF-kappaB activation and sAPPalpha release were antagonized by CCE inhibitors (gadolinium or SKF96365) but not by voltage-gated Ca2+-channel blockers. On the other hand, treatment of cells with NF-kappaB inhibitors (SN50, BAY11-7085, MG132, or pyrrolidine dithiocarbamate) did not inhibit muscarinic receptor-mediated CCE. These findings provide evidence for the involvement of NF-kappaB regulated by CCE in muscarinic receptor-mediated sAPPalpha release enhancement.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Alzheimer Disease / metabolism
  • Amyloid beta-Protein Precursor / metabolism*
  • Calcium / metabolism*
  • Cell Line, Tumor
  • Cell Nucleus / metabolism
  • Cysteine Proteinase Inhibitors / pharmacology
  • Humans
  • Leupeptins / pharmacology
  • NF-kappa B / metabolism*
  • Nitriles / pharmacology
  • Peptides / chemistry
  • Peptides / pharmacology
  • Proteasome Endopeptidase Complex / metabolism
  • Receptors, Muscarinic / metabolism*
  • Sulfones / pharmacology

Substances

  • Amyloid beta-Protein Precursor
  • BAY 11-7085
  • Cysteine Proteinase Inhibitors
  • Leupeptins
  • NF-kappa B
  • Nitriles
  • Peptides
  • Receptors, Muscarinic
  • SN50 peptide
  • Sulfones
  • Proteasome Endopeptidase Complex
  • benzyloxycarbonylleucyl-leucyl-leucine aldehyde
  • Calcium