Ghrelin enhances the growth of cultured human adrenal zona glomerulosa cells by exerting MAPK-mediated proliferogenic and antiapoptotic effects

Peptides. 2004 Aug;25(8):1269-77. doi: 10.1016/j.peptides.2004.05.011.

Abstract

Ghrelin is an endogenous ligand of the growth hormone secretagogue receptor (GHS-R), two subtypes of which have been identified and named GHS-R1a and GHS-R1b. Evidence has been provided that ghrelin and its receptors are expressed in the adrenal gland, and we have investigated the possible role of the ghrelin system in the functional regulation of the human adrenal cortex. Reverse transcription-polymerase chain reaction detected the expression of both subtypes of GHS-Rs exclusively in the zona glomerulosa (ZG). Ghrelin did not significantly affect either basal or agonist-stimulated aldosterone secretion from cultured ZG cells. In contrast, ghrelin raised proliferative activity and decreased apoptotic deletion rate of ZG cells, the maximal effective concentration being 10(-8) M. The growth effects of 10(-8) M ghrelin on cultured ZG cells were not affected by either the protein kinase (PK)A and PKC antagonists H-89 and calphostin-C or the mitogen-activated PK (MAPK) p38 antagonist SB-293580, but were abolished by both the tyrosine kinase (TK) and MAPK p42/p44 antagonists tyrphostin-23 (10(-5) M) and PD-98059 (10(-4) M), respectively. Ghrelin (10(-8) M) enhanced TK and MAPK p42/p44 activities of ZG cells. Preincubation with 10(-5) M tyrphostin-23 blocked the ghrelin-induced stimulation of both TK and MAPK p42/p44, while preincubation with 10(-4) M PD-98059 only annulled MAPK p42/p44 stimulation. Collectively, our findings allow us to conclude that ghrelin, acting via GHS-Rs exclusively located in the ZG, enhances the growth of human adrenal cortex, through a mechanism involving the activation of the TK-dependent MAPK p42/p44 cascade.

MeSH terms

  • Apoptosis / drug effects*
  • Apoptosis / physiology
  • Cell Proliferation / drug effects
  • Cells, Cultured
  • Ghrelin
  • Humans
  • Mitogen-Activated Protein Kinases / metabolism*
  • Peptide Hormones / pharmacology*
  • RNA, Messenger / genetics
  • RNA, Messenger / metabolism
  • Receptors, G-Protein-Coupled / genetics
  • Receptors, G-Protein-Coupled / metabolism
  • Receptors, Ghrelin
  • Zona Glomerulosa / cytology
  • Zona Glomerulosa / drug effects*
  • Zona Glomerulosa / growth & development*

Substances

  • Ghrelin
  • Peptide Hormones
  • RNA, Messenger
  • Receptors, G-Protein-Coupled
  • Receptors, Ghrelin
  • Mitogen-Activated Protein Kinases