Modification of Kv2.1 K+ currents by the silent Kv10 subunits

Brain Res Mol Brain Res. 2004 Apr 7;123(1-2):91-103. doi: 10.1016/j.molbrainres.2004.01.004.

Abstract

Human and rat Kv10.1a and b cDNAs encode silent K+ channel pore-forming subunits that modify the electrophysiological properties of Kv2.1. These alternatively spliced variants arise by the usage of an alternative site of splicing in exon 1 producing an 11-amino acid insertion in the linker between the first and second transmembrane domains in Kv10.1b. In human, the Kv10s mRNA were detected by Northern blot in brain kidney lung and pancreas. In brain, they were expressed in cortex, hippocampus, caudate, putamen, amygdala and weakly in substantia nigra. In rat, Kv10.1 products were detected in brain and weakly in testes. In situ hybridization in rat brain shows that Kv10.1 mRNAs are expressed in cortex, olfactory cortical structures, basal ganglia/striatal structures, hippocampus and in many nuclei of the amygdala complex. The CA3 and dentate gyrus of the hippocampus present a gradient that show a progression from high level of expression in the caudo-ventro-medial area to a weak level in the dorso-rostral area. The CA1 and CA2 areas had low levels throughout the hippocampus. Several small nuclei were also labeled in the thalamus, hypothalamus, pons, midbrain, and medulla oblongata. Co-injection of Kv2.1 and Kv10.1a or b mRNAs in Xenopus oocytes produced smaller currents that in the Kv2.1 injected oocytes and a moderate reduction of the inactivation rate without any appreciable change in recovery from inactivation or voltage dependence of activation or inactivation. At higher concentration, Kv10.1a also reduces the activation rate and a more important reduction in the inactivation rate. The gene that encodes for Kv10.1 mRNAs maps to chromosome 2p22.1 in human, 6q12 in rat and 17E4 in mouse, locations consistent with the known systeny for human, rat and mouse chromosomes.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Alternative Splicing / genetics
  • Amino Acid Sequence / genetics
  • Animals
  • Base Sequence / genetics
  • Brain / metabolism*
  • Brain Chemistry / genetics*
  • Chromosomes, Human, Pair 2 / genetics
  • DNA, Complementary / analysis
  • DNA, Complementary / genetics
  • Delayed Rectifier Potassium Channels
  • Humans
  • Membrane Potentials / genetics
  • Mice
  • Molecular Sequence Data
  • Oocytes / metabolism
  • Phylogeny
  • Potassium Channels / genetics*
  • Potassium Channels / metabolism
  • Potassium Channels, Voltage-Gated*
  • Protein Isoforms / genetics
  • Protein Isoforms / metabolism
  • Protein Subunits / genetics
  • Protein Subunits / metabolism
  • RNA, Messenger / metabolism
  • Rats
  • Sequence Homology, Amino Acid
  • Sequence Homology, Nucleic Acid
  • Shab Potassium Channels
  • Viscera / metabolism
  • Xenopus

Substances

  • DNA, Complementary
  • Delayed Rectifier Potassium Channels
  • KCNB1 protein, human
  • Kcnb1 protein, mouse
  • Kcnb1 protein, rat
  • Kv6.3 protein, mouse
  • Potassium Channels
  • Potassium Channels, Voltage-Gated
  • Protein Isoforms
  • Protein Subunits
  • RNA, Messenger
  • Shab Potassium Channels

Associated data

  • GENBANK/AF454547
  • GENBANK/AF454548
  • GENBANK/AF454549
  • GENBANK/AF454550
  • GENBANK/AF454551
  • GENBANK/AF454552