Presence of 18-A long hydrogen bond track in the active site of Escherichia coli DNA polymerase I (Klenow fragment). Its requirement in the stabilization of enzyme-template-primer complex

J Biol Chem. 2003 Mar 28;278(13):11289-302. doi: 10.1074/jbc.M211496200. Epub 2003 Jan 9.

Abstract

The analysis of the active site region in the crystal structures of template-primer-bound KlenTaq (Klenow fragment equivalent of Thermus aquaticus polymerase I) shows the presence of an approximately 18-A long H-bonding track contributed by the Klenow fragment equivalent of Asn(845), Gln(849), Arg(668), His(881), and Gln(677). Its location is nearly diagonal to the helical axis of the template-primer. Four base pairs in the double stranded region proximal to 3' OH end of the primer terminus appear to interact with individual amino acid components of the track through either the bases or sugar moieties. To understand the functional significance of this H-bonding network in the catalytic function of Klenow fragment (KF), we generated N845A, N845Q, Q849A, Q849N, R668A, H881A, H881V, Q677A, and Q677N mutant species by site-directed mutagenesis. All of the mutant enzymes showed low catalytic activity. The kinetic analysis of mutant enzymes indicated that K(m)(.dNTP) was not significantly altered, but K(D)(.DNA) was significantly increased. Thus the mutant enzymes of the H-bonding track residues had decreased affinity for template-primer, although the extent of decrease was variable. Most interestingly, even the reduced binding of TP by the mutant enzymes occurs in the nonproductive mode. These results demonstrate that an H-bonding track is necessary for the binding of template-primer in the catalytically competent orientation in the pol I family of enzymes. The examination of the interactive environment of individual residues of this track further clarifies the mode of cooperation in various functional domains of pol I.

Publication types

  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Amino Acid Sequence
  • Base Sequence
  • Binding Sites
  • DNA Polymerase I / chemistry
  • DNA Polymerase I / genetics
  • DNA Polymerase I / isolation & purification
  • DNA Polymerase I / metabolism*
  • DNA Primers
  • Escherichia coli / enzymology*
  • Hydrogen Bonding*
  • Kinetics
  • Models, Molecular
  • Molecular Sequence Data
  • Protein Binding
  • Protein Conformation
  • Recombinant Proteins / chemistry
  • Recombinant Proteins / genetics
  • Recombinant Proteins / isolation & purification
  • Recombinant Proteins / metabolism
  • Sequence Homology, Amino Acid

Substances

  • DNA Primers
  • Recombinant Proteins
  • DNA Polymerase I