Identification of novel genes expressed during metanephric induction through single-cell library screening

Kidney Int. 2000 Jun;57(6):2221-8. doi: 10.1046/j.1523-1755.2000.00185.x.

Abstract

Background: Development of the mature kidney is dependent on a series of inductive events between a portion of the epithelial bud at the distal end of the nephric duct and a neighboring domain of committed metanephric mesenchyme. Several genes have been identified to date that are critical in the inductive process. For example, the deletion of Bmp7 from the mouse genome results in dysgenesis or agenesis of the kidney. These findings suggest that Bmp7 controls the expression of genes important for nephrogenesis, but the identity of these genes has remained largely undetermined.

Methods: Single cells were isolated from mouse metanephric mesenchyme during the time of induction (between E11.0 and E11.5) and cDNA libraries constructed from induced and uninduced tissue. Subtractive hybridization was performed to isolate genes that were expressed during E11.5 but not E11.0.

Results: Using this approach, we identified eight previously known genes, three of which were known to be involved in metanephric induction, thus validating our approach, and nine novel genes. Eight of these genes were completely novel, whereas one was similar to a member of the yeast Anaphase Promoting Complex.

Conclusions: Through subtractive hybridization of mouse E11.0 and E11.5 metanephric mesenchyme single-cell cDNA libraries, we have identified novel genes that are candidates for involvement in nephrogenesis through their up-regulation during the inductive process.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Amino Acid Sequence / genetics
  • Animals
  • DNA, Complementary / genetics
  • Embryonic and Fetal Development / physiology
  • Gene Expression Regulation, Developmental*
  • Gene Library
  • Gestational Age
  • Kidney / embryology*
  • Mice
  • Mice, Inbred C57BL
  • Molecular Sequence Data

Substances

  • DNA, Complementary