Anti-human immunodeficiency virus type 1 activity, intracellular metabolism, and pharmacokinetic evaluation of 2'-deoxy-3'-oxa-4'-thiocytidine

Antimicrob Agents Chemother. 1999 Aug;43(8):1835-44. doi: 10.1128/AAC.43.8.1835.

Abstract

The racemic nucleoside analogue 2'-deoxy-3'-oxa-4'-thiocytidine (dOTC) is in clinical development for the treatment of human immunodeficiency virus (HIV) type 1 (HIV-1) infection. dOTC is structurally related to lamivudine (3TC), but the oxygen and sulfur in the furanosyl ring are transposed. Intracellular metabolism studies showed that dOTC is phosphorylated within cells via the deoxycytidine kinase pathway and that approximately 2 to 5% of dOTC is converted into the racemic triphosphate derivatives, which had measurable half-lives (2 to 3 hours) within cells. Both 5'-triphosphate (TP) derivatives of dOTC were more potent than 3TC-TP at inhibiting HIV-1 reverse transcriptase (RT) in vitro. The K(i) values for dOTC-TP obtained against human DNA polymerases alpha, beta, and gamma were 5,000-, 78-, and 571-fold greater, respectively, than those for HIV RT (28 nM), indicating a good selectivity for the viral enzyme. In culture experiments, dOTC is a potent inhibitor of primary isolates of HIV-1, which were obtained from antiretroviral drug-naive patients as well as from nucleoside therapy-experienced (3TC- and/or zidovudine [AZT]-treated) patients. The mean 50% inhibitory concentration of dOTC for drug-naive isolates was 1.76 microM, rising to only 2.53 and 2.5 microM for viruses resistant to 3TC and viruses resistant to 3TC and AZT, respectively. This minimal change in activity is in contrast to the more dramatic changes observed when 3TC or AZT was evaluated against these same viral isolates. In tissue culture studies, the 50% toxicity levels for dOTC, which were determined by using [(3)H]thymidine uptake as a measure of logarithmic-phase cell proliferation, was greater than 100 microM for all cell lines tested. In addition, after 14 days of continuous culture, at concentrations up to 10 microM, no measurable toxic effect on HepG2 cells or mitochondrial DNA replication within these cells was observed. When administered orally to rats, dOTC was well absorbed, with a bioavailability of approximately 77%, with a high proportion (approximately 16.5% of the levels in serum) found in the cerebrospinal fluid.

MeSH terms

  • Animals
  • Anti-HIV Agents / metabolism
  • Anti-HIV Agents / pharmacokinetics*
  • Anti-HIV Agents / pharmacology*
  • Anti-HIV Agents / toxicity
  • Biological Availability
  • Bone Marrow Cells / drug effects
  • Cerebrospinal Fluid / metabolism
  • Culture Techniques
  • DNA-Directed DNA Polymerase / metabolism
  • Deoxycytidine / analogs & derivatives*
  • Deoxycytidine / pharmacokinetics
  • Deoxycytidine / pharmacology
  • Deoxycytidine / toxicity
  • Drug Resistance, Microbial
  • Enzyme Inhibitors / metabolism
  • Enzyme Inhibitors / pharmacokinetics
  • Enzyme Inhibitors / pharmacology
  • Enzyme Inhibitors / toxicity
  • Female
  • HIV Reverse Transcriptase / antagonists & inhibitors
  • HIV Reverse Transcriptase / metabolism
  • HIV-1 / drug effects*
  • HIV-1 / enzymology
  • HIV-1 / isolation & purification
  • Humans
  • Intracellular Fluid / metabolism
  • Kinetics
  • Male
  • Mice
  • Mitochondria, Liver / drug effects
  • Nucleic Acid Synthesis Inhibitors
  • Rats
  • Rats, Sprague-Dawley
  • Reverse Transcriptase Inhibitors / metabolism
  • Reverse Transcriptase Inhibitors / pharmacokinetics
  • Reverse Transcriptase Inhibitors / pharmacology
  • Reverse Transcriptase Inhibitors / toxicity
  • Stem Cells / drug effects
  • Stereoisomerism
  • Thionucleosides / pharmacokinetics*
  • Thionucleosides / pharmacology
  • Thionucleosides / toxicity
  • Tumor Cells, Cultured

Substances

  • 2'-deoxy-3'-oxa-thiocytidine
  • Anti-HIV Agents
  • Enzyme Inhibitors
  • Nucleic Acid Synthesis Inhibitors
  • Reverse Transcriptase Inhibitors
  • Thionucleosides
  • Deoxycytidine
  • HIV Reverse Transcriptase
  • DNA-Directed DNA Polymerase