Entry - #148820 - WAARDENBURG SYNDROME, TYPE 3; WS3 - OMIM
# 148820

WAARDENBURG SYNDROME, TYPE 3; WS3


Alternative titles; symbols

WAARDENBURG SYNDROME WITH UPPER LIMB ANOMALIES
WAARDENBURG SYNDROME, TYPE III
KLEIN-WAARDENBURG SYNDROME


Phenotype-Gene Relationships

Location Phenotype Phenotype
MIM number
Inheritance Phenotype
mapping key
Gene/Locus Gene/Locus
MIM number
2q36.1 Waardenburg syndrome, type 3 148820 AD, AR 3 PAX3 606597
Clinical Synopsis
 
Phenotypic Series
 

INHERITANCE
- Autosomal dominant
- Autosomal recessive
HEAD & NECK
Face
- Prognathism
Ears
- Sensorineural deafness
Eyes
- Dystopia canthorum
- Blepharophimosis
- Synophrys
- Heterochromia iridis (complete or partial)
- Hypopigmented iris
- Bright blue eyes
Nose
- Prominent nasal root
- Hypoplastic alae
SKELETAL
Limbs
- Contractures of the upper limb joints
- Hypoplasia of the bones of the upper limbs and wrists
Hands
- Syndactyly, cutaneous
- Finger contractures
- Hypoplasia of the hand muscles
- Clinodactyly
- Brachydactyly
Feet
- Syndactyly
SKIN, NAILS, & HAIR
Skin
- Congenital partial albinism (leukoderma) on face, trunk, or limbs
- Hypopigmented skin patches
Hair
- White forelock
- Premature graying of the hair
NEUROLOGIC
Central Nervous System
- Mental retardation (reported in 1 patient)
- Spasticity (reported in 1 patient)
MISCELLANEOUS
- Variable severity
- Both heterozygous and homozygous PAX3 mutations have been found
MOLECULAR BASIS
- Caused by mutation in the paired box gene 3 (PAX3, 606597.0009)

TEXT

A number sign (#) is used with this entry because Waardenburg syndrome type 3 (WS3) is caused by heterozygous or homozygous mutation in the PAX3 gene (606597) on chromosome 2q36.

Waardenburg syndrome type 1 (WS1; 193500) is also caused by heterozygous mutation in the PAX3 gene.


Description

Waardenburg syndrome type 3 is an auditory-pigmentary syndrome characterized by pigmentary abnormalities of the hair, skin, and eyes; congenital sensorineural hearing loss; presence of 'dystopia canthorum,' the lateral displacement of the ocular inner canthi; and upper limb abnormalities (reviews by Read and Newton, 1997 and Pingault et al., 2010). WS type 3 is also referred to as 'Klein-Waardenburg syndrome' (Gorlin et al., 1976).

Clinical Variability of Waardenburg Syndrome Types 1-4

Waardenburg syndrome has been classified into 4 main phenotypes. Type I Waardenburg syndrome (WS1; 193500) is characterized by pigmentary abnormalities of the hair, including a white forelock and premature graying; pigmentary changes of the iris, such as heterochromia iridis and brilliant blue eyes; congenital sensorineural hearing loss; and 'dystopia canthorum.' WS type II (WS2) is distinguished from type I by the absence of dystopia canthorum. WS type III has dystopia canthorum and is distinguished by the presence of upper limb abnormalities. WS type IV (WS4; 277580), also known as Waardenburg-Shah syndrome, has the additional feature of Hirschsprung disease (reviews by Read and Newton, 1997 and Pingault et al., 2010).


Clinical Features

Klein (1950) first reported the association of limb anomalies with what has come to be recognized as the hallmarks of Waardenburg syndrome type 1, including pigmentary defects and sensorineural hearing loss. Single cases were reported by Wilbrandt and Ammann (1964) and and Mossallam et al. (1974).

Klein (1981) visited the patient of Marx and Bertrand (1968) and found that he had an 11-year-old son with classic facial changes of Waardenburg syndrome and winged scapulae, but no gross or radiographic changes in the arms.

Goodman et al. (1982) documented the combination of upper limb abnormalities and the facial and ocular abnormalities of the Waardenburg syndrome in a Yemenite Jewish brother and sister, and reviewed this association in 4 patients reported earlier. The bilateral upper limb anomalies included hypoplasia of the musculoskeletal system, flexion contractures, fusion of the carpal bones, and syndactyly. The brother, at age 23 years, had a head circumference of only 55 cm (height 161 cm), but presumably normal intelligence. The sister, at age 25 years, had marked microcephaly (head circumference 47 cm), severe mental retardation, and spastic paraplegia. Parental consanguinity was denied. Sheffer and Zlotogora (1992) provided follow-up of the family reported by Goodman et al. (1982). Sheffer and Zlotogora (1992) described a brother and sister with dystopia canthorum, blepharophimosis, and bilateral flexion contractures of the fingers. The father of these sibs and his sister, who had previously been reported by Goodman et al. (1982), showed the same features. The flexion contractures in both the proposita and her father were pictured by Sheffer and Zlotogora (1992).

In their Figure 2, Tassabehji et al. (1995) pictured the hands of a man noted to have flexion contractures of the fingers characteristic of WS3. A nonsense mutation with predicted truncation of the PAX3 gene product was found: deletion of a cytosine at nucleotide 916 in exon 6 in the homeodomain. The daughter, who was also pictured, and the mother of the proband were said to have WS1.

From a systematic literature search, Song et al. (2016) determined that the prevalence of hearing loss in patients with Waardenburg syndrome differed according to the genotype: the prevalence in those with WS3 due to PAX3 mutations was 57.1%.

Clinical Variability

Goodman et al. (1980) reported the cases of 2 Ashkenazi Jewish brothers with a 'new' syndrome of white forelock (poliosis), distinctive facial features and congenital malformations of the ocular, cardiopulmonary and skeletal systems. Ocular hypertelorism, atrial septal defect, prominent thoracic and abdominal veins, hypoplastic or absent terminal phalanges of toes, and segmental bronchomalacia with atelectasis were features.


Inheritance

Goodman et al. (1982) favored autosomal dominant inheritance. Follow-up of this family by Sheffer and Zlotogora (1992) appeared to confirm autosomal dominant inheritance.


Molecular Genetics

Milunsky et al. (1992) and Hoth et al. (1993) identified a heterozygous mutation in the PAX3 gene (N47H; 606597.0011) in a Yemenite/Russian Jewish family with the Klein-Waardenburg syndrome (Goodman et al., 1982 and Sheffer and Zlotogora, 1992). The father, his 2 children, and his sister had signs of the disorder, but neither of the father's parents were affected.

Tekin et al. (2001) described a mother and son with typical clinical findings of WS type 3 segregating with a heterozygous 13-bp deletion in the paired domain in exon 3 of the PAX3 gene (606597.0012).

Zlotogora et al. (1995) presented evidence that homozygosity for a PAX3 mutation can cause WS type 3 (see GENOTYPE/PHENOTYPE CORRELATIONS).


Genotype/Phenotype Correlations

Zlotogora et al. (1995) presented evidence that homozygosity for a PAX3 mutation can cause WS type 3. In a large kindred, including many individuals affected with WS type 1, a child was born affected with a very severe form of WS type 3. The child presented with dystopia canthorum, partial albinism, and very severe upper-limb defects. His parents were first cousins and both were affected with a mild form of WS1. Molecular analysis identified a heterozygous mutation in the PAX3 gene (S84F; 606497.0009). Individuals with WS type 1 were heterozygous for the mutation and the child with WS type 3 was homozygous. The observation that the PAX3 homozygote survived at least into early infancy and did not suffer from a neural tube defect was unexpected, since, in all the Pax3 mutations known in the mice, homozygosity leads to severe neural tube defects and intrauterine or neonatal death. Ayme and Philip (1995) likewise described possible homozygosity for a PAX3 mutation in a fetus with exencephaly and severe contractures and webbing of the limbs.

Wollnik et al. (2003) reported a family in which both parents were heterozygous for a Y90H mutation in PAX3 (606597.0013) and had Waardenburg syndrome type 1; the offspring was homozygous for the mutation and had Waardenburg syndrome type 3.


Cytogenetics

In a patient with Waardenburg syndrome type 3 with characteristic features of severe neurosensory deafness, diagnostic dysmorphic facial features, hypopigmentation, and severe axial and limb skeletal anomalies, Pasteris et al. (1992) identified a de novo deletion of 2q35-q36. Chromosome 2 homologs could not be distinguished by bivariant fluorescent-activated chromosome sorting, suggesting that the deletion was less than 5% of the chromosome length, i.e., less than 12.5 megabases. Densitometric hybridization analyses showed that the patient was hemizygous for loci HuP2 (PAX3) and COL4A3 (120070) and that flanking loci INHA (147380) and ALPI (171740) were present in 2 copies. Analyses of somatic cell hybrids selectively retaining the chromosome 2 showed that the deletion was paternal in origin. Physical mapping confirmed the deletion of 2q35-q36 and showed that COL4A3 is telomeric to PAX3. From these studies, Pasteris et al. (1992) concluded that Waardenburg syndrome type 3 is a contiguous gene syndrome. By molecular analysis of a chromosome 2 deletion mapping panel, Pasteris et al. (1993) determined that the order of loci on 2q is as follows: cen--(INHA, DES)--PAX3--COL4A3--(ALPI, CHRND)--tel. They also studied a patient with cleft palate and lip pits who lacked diagnostic WS features and found that the del(2)(q33q35) deletion involved the PAX3 locus. The finding suggested that not all PAX3 mutations are associated with a WS phenotype and that additional loci in the region may modify or regulate the PAX3 locus and/or the development of the WS phenotype.


Animal Model

Homozygosity in the 'splotch' mouse, a mouse model for Waardenburg syndrome due to a PAX3 deletion, leads to neural tube defect in addition to severe limb defects Epstein et al. (1991).


REFERENCES

  1. Ayme, S., Philip, N. Possible homozygous Waardenburg syndrome in a fetus with exencephaly. (Letter) Am. J. Med. Genet. 59: 263-265, 1995. [PubMed: 8588597, related citations] [Full Text]

  2. Epstein, D. J., Vekemans, M., Gros, P. Splotch (Sp-2H), a mutation affecting development of the mouse neural tube, shows a deletion within the paired homeodomain of Pax-3. Cell 67: 767-774, 1991. [PubMed: 1682057, related citations] [Full Text]

  3. Goodman, R. M., Lewithal, I., Solomon, A., Klein, D. Upper limb involvement in the Klein-Waardenburg syndrome. Am. J. Med. Genet. 11: 425-433, 1982. [PubMed: 7091186, related citations] [Full Text]

  4. Goodman, R. M., Yahav, Y., Frand, M., Barzilay, Z., Nissan, E., Hertz, M. A new white forelock (poliosis) syndrome with multiple congenital malformations in two sibs. Clin. Genet. 17: 437-442, 1980. [PubMed: 7398117, related citations] [Full Text]

  5. Gorlin, R. J., Pindborg, J., Cohen, M. M., Jr. Syndromes of the Head and Neck. (2nd ed.) New York: McGraw-Hill (pub.) 1976.

  6. Hoth, C. F., Milunsky, A., Lipsky, N., Sheffer, R., Clarren, S. K., Baldwin, C. T. Mutations in the paired domain of the human PAX3 gene cause Klein-Waardenburg syndrome (WS-III) as well as Waardenburg syndrome type I (WS-I). Am. J. Hum. Genet. 52: 455-462, 1993. [PubMed: 8447316, related citations]

  7. Klein, D. Albinisme partiel (leucisme) avec surdi-mutite, blepharophimosis et dysplasie myo-osteo-articulaire. Helv. Paediat. Acta 5: 38-58, 1950.

  8. Klein, D. Personal Communication. Geneva, Switzerland 9/1981.

  9. Klein, D. Historical background and evidence for dominant inheritance of the Klein-Waardenburg syndrome (type III). Am. J. Med. Genet. 14: 231-239, 1983. [PubMed: 6340503, related citations] [Full Text]

  10. Marx, P., Bertrand, J. Un cas de syndrome Waardenburg-Klein. Bull. Soc. Ophtal. Franc. 68: 444-447, 1968. [PubMed: 5759294, related citations]

  11. Milunsky, A., Lipsky, N., Sheffer, R., Zlotogora, J., Baldwin, C. A mutation in the Waardenburg syndrome (WS-I) gene in a family with 'WS-III'. (Abstract) Am. J. Hum. Genet. 51 (suppl.): A222, 1992.

  12. Mossallam, I., El-Khodary, A. F., Temtamy, S. A. Waardenburg's syndrome in Egypt. Ain Shams Med. J. 25: 43-62, 1974.

  13. Pasteris, N. G., Trask, B. J., Sheldon, S., Gorski, J. L. Discordant phenotype of two overlapping deletions involving the PAX3 gene in chromosome 2q35. Hum. Molec. Genet. 2: 953-959, 1993. [PubMed: 8103404, related citations] [Full Text]

  14. Pasteris, N. G., Trask, B., Sheldon, S., Gorski, J. L. A chromosome deletion 2q35-36 spanning loci HuP2 and COL4A3 results in Waardenburg syndrome type III (Klein-Waardenburg syndrome). (Abstract) Am. J. Hum. Genet. 51 (suppl.): A224, 1992.

  15. Pingault, V., Ente, D., Dastot-Le Moal, F., Goossens, M., Marlin, S., Bondurand, N. Review and update of mutations causing Waardenburg syndrome. Hum. Mutat. 31: 391-406, 2010. [PubMed: 20127975, related citations] [Full Text]

  16. Read, A. P., Newton, V. E. Waardenburg syndrome. J. Med. Genet. 34: 656-665, 1997. [PubMed: 9279758, related citations] [Full Text]

  17. Sheffer, R., Zlotogora, J. Autosomal dominant inheritance of Klein-Waardenburg syndrome. Am. J. Med. Genet. 42: 320-322, 1992. [PubMed: 1536170, related citations] [Full Text]

  18. Song, J., Feng, Y., Acke, F. R., Coucke, P., Vleminckx, K., Dhooge, I. J. Hearing loss in Waardenburg syndrome: a systematic review. Clin. Genet. 89: 416-425, 2016. [PubMed: 26100139, related citations] [Full Text]

  19. Tamayo, M. L., Gelvez, N., Rodriguez, M., Florez, S., Varon, C., Medina, D., Bernal, J. E. Screening program for Waardenburg syndrome in Colombia: clinical definition and phenotypic variability. Am. J. Med. Genet. 146A: 1026-1031, 2008. [PubMed: 18241065, related citations] [Full Text]

  20. Tassabehji, M., Newton, V. E., Liu, X.-Z., Brady, A., Donnai, D., Krajewska-Walasek, M., Murday, V., Norman, A., Obersztyn, E., Reardon, W., Rice, J. C., Trembath, R., Wieacker, P., Whiteford, M., Winter, R., Read, A. P. The mutational spectrum in Waardenburg syndrome. Hum. Molec. Genet. 4: 2131-2137, 1995. [PubMed: 8589691, related citations] [Full Text]

  21. Tekin, M., Bodurtha, J. N., Nance, W. E., Pandya, A. Waardenburg syndrome type 3 (Klein-Waardenburg syndrome) segregating with a heterozygous deletion in the paired box domain of PAX3: a simple variant or a true syndrome? Clin. Genet. 60: 301-304, 2001. [PubMed: 11683776, related citations] [Full Text]

  22. Wilbrandt, H. R., Ammann, F. Nouvelle observation de la forme grave du syndrome de Klein-Waardenburg. Arch. Klaus Stift. Vererbungsforsch. 39: 80-92, 1964. [PubMed: 5899973, related citations]

  23. Wollnik, B., Tukel, T., Uyguner, O., Ghanbari, A., Kayserili, H., Emiroglu, M., Yuksel-Apak, M. Homozygous and heterozygous inheritance of PAX3 mutations causes different types of Waardenburg syndrome. Am. J. Med. Genet. 122A: 42-45, 2003. [PubMed: 12949970, related citations] [Full Text]

  24. Zlotogora, J., Lerer, I., Bar-David, S., Ergaz, Z., Abeliovich, D. Homozygosity for Waardenburg syndrome. Am. J. Hum. Genet. 56: 1173-1178, 1995. [PubMed: 7726174, related citations]


Cassandra L. Kniffin - updated : 5/24/2016
Cassandra L. Kniffin - updated : 3/8/2010
Victor A. McKusick - updated : 9/25/2003
Creation Date:
Victor A. McKusick : 6/2/1986
alopez : 07/21/2023
carol : 07/09/2016
carol : 5/24/2016
ckniffin : 5/24/2016
carol : 5/16/2016
ckniffin : 3/15/2010
carol : 3/11/2010
ckniffin : 3/8/2010
mgross : 3/29/2006
terry : 11/3/2004
cwells : 9/25/2003
carol : 1/8/2002
dkim : 12/10/1998
carol : 6/18/1998
mark : 1/26/1998
terry : 1/26/1998
jenny : 9/19/1997
terry : 9/15/1997
terry : 3/26/1996
mark : 3/12/1996
terry : 3/5/1996
mark : 1/30/1996
mark : 1/25/1996
mark : 5/2/1995
mimadm : 11/5/1994
pfoster : 8/18/1994
davew : 7/28/1994
carol : 5/23/1994
terry : 5/13/1994

# 148820

WAARDENBURG SYNDROME, TYPE 3; WS3


Alternative titles; symbols

WAARDENBURG SYNDROME WITH UPPER LIMB ANOMALIES
WAARDENBURG SYNDROME, TYPE III
KLEIN-WAARDENBURG SYNDROME


SNOMEDCT: 237918004;   ORPHA: 3440, 896;   DO: 0110949;  


Phenotype-Gene Relationships

Location Phenotype Phenotype
MIM number
Inheritance Phenotype
mapping key
Gene/Locus Gene/Locus
MIM number
2q36.1 Waardenburg syndrome, type 3 148820 Autosomal dominant; Autosomal recessive 3 PAX3 606597

TEXT

A number sign (#) is used with this entry because Waardenburg syndrome type 3 (WS3) is caused by heterozygous or homozygous mutation in the PAX3 gene (606597) on chromosome 2q36.

Waardenburg syndrome type 1 (WS1; 193500) is also caused by heterozygous mutation in the PAX3 gene.


Description

Waardenburg syndrome type 3 is an auditory-pigmentary syndrome characterized by pigmentary abnormalities of the hair, skin, and eyes; congenital sensorineural hearing loss; presence of 'dystopia canthorum,' the lateral displacement of the ocular inner canthi; and upper limb abnormalities (reviews by Read and Newton, 1997 and Pingault et al., 2010). WS type 3 is also referred to as 'Klein-Waardenburg syndrome' (Gorlin et al., 1976).

Clinical Variability of Waardenburg Syndrome Types 1-4

Waardenburg syndrome has been classified into 4 main phenotypes. Type I Waardenburg syndrome (WS1; 193500) is characterized by pigmentary abnormalities of the hair, including a white forelock and premature graying; pigmentary changes of the iris, such as heterochromia iridis and brilliant blue eyes; congenital sensorineural hearing loss; and 'dystopia canthorum.' WS type II (WS2) is distinguished from type I by the absence of dystopia canthorum. WS type III has dystopia canthorum and is distinguished by the presence of upper limb abnormalities. WS type IV (WS4; 277580), also known as Waardenburg-Shah syndrome, has the additional feature of Hirschsprung disease (reviews by Read and Newton, 1997 and Pingault et al., 2010).


Clinical Features

Klein (1950) first reported the association of limb anomalies with what has come to be recognized as the hallmarks of Waardenburg syndrome type 1, including pigmentary defects and sensorineural hearing loss. Single cases were reported by Wilbrandt and Ammann (1964) and and Mossallam et al. (1974).

Klein (1981) visited the patient of Marx and Bertrand (1968) and found that he had an 11-year-old son with classic facial changes of Waardenburg syndrome and winged scapulae, but no gross or radiographic changes in the arms.

Goodman et al. (1982) documented the combination of upper limb abnormalities and the facial and ocular abnormalities of the Waardenburg syndrome in a Yemenite Jewish brother and sister, and reviewed this association in 4 patients reported earlier. The bilateral upper limb anomalies included hypoplasia of the musculoskeletal system, flexion contractures, fusion of the carpal bones, and syndactyly. The brother, at age 23 years, had a head circumference of only 55 cm (height 161 cm), but presumably normal intelligence. The sister, at age 25 years, had marked microcephaly (head circumference 47 cm), severe mental retardation, and spastic paraplegia. Parental consanguinity was denied. Sheffer and Zlotogora (1992) provided follow-up of the family reported by Goodman et al. (1982). Sheffer and Zlotogora (1992) described a brother and sister with dystopia canthorum, blepharophimosis, and bilateral flexion contractures of the fingers. The father of these sibs and his sister, who had previously been reported by Goodman et al. (1982), showed the same features. The flexion contractures in both the proposita and her father were pictured by Sheffer and Zlotogora (1992).

In their Figure 2, Tassabehji et al. (1995) pictured the hands of a man noted to have flexion contractures of the fingers characteristic of WS3. A nonsense mutation with predicted truncation of the PAX3 gene product was found: deletion of a cytosine at nucleotide 916 in exon 6 in the homeodomain. The daughter, who was also pictured, and the mother of the proband were said to have WS1.

From a systematic literature search, Song et al. (2016) determined that the prevalence of hearing loss in patients with Waardenburg syndrome differed according to the genotype: the prevalence in those with WS3 due to PAX3 mutations was 57.1%.

Clinical Variability

Goodman et al. (1980) reported the cases of 2 Ashkenazi Jewish brothers with a 'new' syndrome of white forelock (poliosis), distinctive facial features and congenital malformations of the ocular, cardiopulmonary and skeletal systems. Ocular hypertelorism, atrial septal defect, prominent thoracic and abdominal veins, hypoplastic or absent terminal phalanges of toes, and segmental bronchomalacia with atelectasis were features.


Inheritance

Goodman et al. (1982) favored autosomal dominant inheritance. Follow-up of this family by Sheffer and Zlotogora (1992) appeared to confirm autosomal dominant inheritance.


Molecular Genetics

Milunsky et al. (1992) and Hoth et al. (1993) identified a heterozygous mutation in the PAX3 gene (N47H; 606597.0011) in a Yemenite/Russian Jewish family with the Klein-Waardenburg syndrome (Goodman et al., 1982 and Sheffer and Zlotogora, 1992). The father, his 2 children, and his sister had signs of the disorder, but neither of the father's parents were affected.

Tekin et al. (2001) described a mother and son with typical clinical findings of WS type 3 segregating with a heterozygous 13-bp deletion in the paired domain in exon 3 of the PAX3 gene (606597.0012).

Zlotogora et al. (1995) presented evidence that homozygosity for a PAX3 mutation can cause WS type 3 (see GENOTYPE/PHENOTYPE CORRELATIONS).


Genotype/Phenotype Correlations

Zlotogora et al. (1995) presented evidence that homozygosity for a PAX3 mutation can cause WS type 3. In a large kindred, including many individuals affected with WS type 1, a child was born affected with a very severe form of WS type 3. The child presented with dystopia canthorum, partial albinism, and very severe upper-limb defects. His parents were first cousins and both were affected with a mild form of WS1. Molecular analysis identified a heterozygous mutation in the PAX3 gene (S84F; 606497.0009). Individuals with WS type 1 were heterozygous for the mutation and the child with WS type 3 was homozygous. The observation that the PAX3 homozygote survived at least into early infancy and did not suffer from a neural tube defect was unexpected, since, in all the Pax3 mutations known in the mice, homozygosity leads to severe neural tube defects and intrauterine or neonatal death. Ayme and Philip (1995) likewise described possible homozygosity for a PAX3 mutation in a fetus with exencephaly and severe contractures and webbing of the limbs.

Wollnik et al. (2003) reported a family in which both parents were heterozygous for a Y90H mutation in PAX3 (606597.0013) and had Waardenburg syndrome type 1; the offspring was homozygous for the mutation and had Waardenburg syndrome type 3.


Cytogenetics

In a patient with Waardenburg syndrome type 3 with characteristic features of severe neurosensory deafness, diagnostic dysmorphic facial features, hypopigmentation, and severe axial and limb skeletal anomalies, Pasteris et al. (1992) identified a de novo deletion of 2q35-q36. Chromosome 2 homologs could not be distinguished by bivariant fluorescent-activated chromosome sorting, suggesting that the deletion was less than 5% of the chromosome length, i.e., less than 12.5 megabases. Densitometric hybridization analyses showed that the patient was hemizygous for loci HuP2 (PAX3) and COL4A3 (120070) and that flanking loci INHA (147380) and ALPI (171740) were present in 2 copies. Analyses of somatic cell hybrids selectively retaining the chromosome 2 showed that the deletion was paternal in origin. Physical mapping confirmed the deletion of 2q35-q36 and showed that COL4A3 is telomeric to PAX3. From these studies, Pasteris et al. (1992) concluded that Waardenburg syndrome type 3 is a contiguous gene syndrome. By molecular analysis of a chromosome 2 deletion mapping panel, Pasteris et al. (1993) determined that the order of loci on 2q is as follows: cen--(INHA, DES)--PAX3--COL4A3--(ALPI, CHRND)--tel. They also studied a patient with cleft palate and lip pits who lacked diagnostic WS features and found that the del(2)(q33q35) deletion involved the PAX3 locus. The finding suggested that not all PAX3 mutations are associated with a WS phenotype and that additional loci in the region may modify or regulate the PAX3 locus and/or the development of the WS phenotype.


Animal Model

Homozygosity in the 'splotch' mouse, a mouse model for Waardenburg syndrome due to a PAX3 deletion, leads to neural tube defect in addition to severe limb defects Epstein et al. (1991).


See Also:

Klein (1983); Tamayo et al. (2008)

REFERENCES

  1. Ayme, S., Philip, N. Possible homozygous Waardenburg syndrome in a fetus with exencephaly. (Letter) Am. J. Med. Genet. 59: 263-265, 1995. [PubMed: 8588597] [Full Text: https://doi.org/10.1002/ajmg.1320590227]

  2. Epstein, D. J., Vekemans, M., Gros, P. Splotch (Sp-2H), a mutation affecting development of the mouse neural tube, shows a deletion within the paired homeodomain of Pax-3. Cell 67: 767-774, 1991. [PubMed: 1682057] [Full Text: https://doi.org/10.1016/0092-8674(91)90071-6]

  3. Goodman, R. M., Lewithal, I., Solomon, A., Klein, D. Upper limb involvement in the Klein-Waardenburg syndrome. Am. J. Med. Genet. 11: 425-433, 1982. [PubMed: 7091186] [Full Text: https://doi.org/10.1002/ajmg.1320110407]

  4. Goodman, R. M., Yahav, Y., Frand, M., Barzilay, Z., Nissan, E., Hertz, M. A new white forelock (poliosis) syndrome with multiple congenital malformations in two sibs. Clin. Genet. 17: 437-442, 1980. [PubMed: 7398117] [Full Text: https://doi.org/10.1111/j.1399-0004.1980.tb00177.x]

  5. Gorlin, R. J., Pindborg, J., Cohen, M. M., Jr. Syndromes of the Head and Neck. (2nd ed.) New York: McGraw-Hill (pub.) 1976.

  6. Hoth, C. F., Milunsky, A., Lipsky, N., Sheffer, R., Clarren, S. K., Baldwin, C. T. Mutations in the paired domain of the human PAX3 gene cause Klein-Waardenburg syndrome (WS-III) as well as Waardenburg syndrome type I (WS-I). Am. J. Hum. Genet. 52: 455-462, 1993. [PubMed: 8447316]

  7. Klein, D. Albinisme partiel (leucisme) avec surdi-mutite, blepharophimosis et dysplasie myo-osteo-articulaire. Helv. Paediat. Acta 5: 38-58, 1950.

  8. Klein, D. Personal Communication. Geneva, Switzerland 9/1981.

  9. Klein, D. Historical background and evidence for dominant inheritance of the Klein-Waardenburg syndrome (type III). Am. J. Med. Genet. 14: 231-239, 1983. [PubMed: 6340503] [Full Text: https://doi.org/10.1002/ajmg.1320140205]

  10. Marx, P., Bertrand, J. Un cas de syndrome Waardenburg-Klein. Bull. Soc. Ophtal. Franc. 68: 444-447, 1968. [PubMed: 5759294]

  11. Milunsky, A., Lipsky, N., Sheffer, R., Zlotogora, J., Baldwin, C. A mutation in the Waardenburg syndrome (WS-I) gene in a family with 'WS-III'. (Abstract) Am. J. Hum. Genet. 51 (suppl.): A222, 1992.

  12. Mossallam, I., El-Khodary, A. F., Temtamy, S. A. Waardenburg's syndrome in Egypt. Ain Shams Med. J. 25: 43-62, 1974.

  13. Pasteris, N. G., Trask, B. J., Sheldon, S., Gorski, J. L. Discordant phenotype of two overlapping deletions involving the PAX3 gene in chromosome 2q35. Hum. Molec. Genet. 2: 953-959, 1993. [PubMed: 8103404] [Full Text: https://doi.org/10.1093/hmg/2.7.953]

  14. Pasteris, N. G., Trask, B., Sheldon, S., Gorski, J. L. A chromosome deletion 2q35-36 spanning loci HuP2 and COL4A3 results in Waardenburg syndrome type III (Klein-Waardenburg syndrome). (Abstract) Am. J. Hum. Genet. 51 (suppl.): A224, 1992.

  15. Pingault, V., Ente, D., Dastot-Le Moal, F., Goossens, M., Marlin, S., Bondurand, N. Review and update of mutations causing Waardenburg syndrome. Hum. Mutat. 31: 391-406, 2010. [PubMed: 20127975] [Full Text: https://doi.org/10.1002/humu.21211]

  16. Read, A. P., Newton, V. E. Waardenburg syndrome. J. Med. Genet. 34: 656-665, 1997. [PubMed: 9279758] [Full Text: https://doi.org/10.1136/jmg.34.8.656]

  17. Sheffer, R., Zlotogora, J. Autosomal dominant inheritance of Klein-Waardenburg syndrome. Am. J. Med. Genet. 42: 320-322, 1992. [PubMed: 1536170] [Full Text: https://doi.org/10.1002/ajmg.1320420312]

  18. Song, J., Feng, Y., Acke, F. R., Coucke, P., Vleminckx, K., Dhooge, I. J. Hearing loss in Waardenburg syndrome: a systematic review. Clin. Genet. 89: 416-425, 2016. [PubMed: 26100139] [Full Text: https://doi.org/10.1111/cge.12631]

  19. Tamayo, M. L., Gelvez, N., Rodriguez, M., Florez, S., Varon, C., Medina, D., Bernal, J. E. Screening program for Waardenburg syndrome in Colombia: clinical definition and phenotypic variability. Am. J. Med. Genet. 146A: 1026-1031, 2008. [PubMed: 18241065] [Full Text: https://doi.org/10.1002/ajmg.a.32189]

  20. Tassabehji, M., Newton, V. E., Liu, X.-Z., Brady, A., Donnai, D., Krajewska-Walasek, M., Murday, V., Norman, A., Obersztyn, E., Reardon, W., Rice, J. C., Trembath, R., Wieacker, P., Whiteford, M., Winter, R., Read, A. P. The mutational spectrum in Waardenburg syndrome. Hum. Molec. Genet. 4: 2131-2137, 1995. [PubMed: 8589691] [Full Text: https://doi.org/10.1093/hmg/4.11.2131]

  21. Tekin, M., Bodurtha, J. N., Nance, W. E., Pandya, A. Waardenburg syndrome type 3 (Klein-Waardenburg syndrome) segregating with a heterozygous deletion in the paired box domain of PAX3: a simple variant or a true syndrome? Clin. Genet. 60: 301-304, 2001. [PubMed: 11683776] [Full Text: https://doi.org/10.1034/j.1399-0004.2001.600408.x]

  22. Wilbrandt, H. R., Ammann, F. Nouvelle observation de la forme grave du syndrome de Klein-Waardenburg. Arch. Klaus Stift. Vererbungsforsch. 39: 80-92, 1964. [PubMed: 5899973]

  23. Wollnik, B., Tukel, T., Uyguner, O., Ghanbari, A., Kayserili, H., Emiroglu, M., Yuksel-Apak, M. Homozygous and heterozygous inheritance of PAX3 mutations causes different types of Waardenburg syndrome. Am. J. Med. Genet. 122A: 42-45, 2003. [PubMed: 12949970] [Full Text: https://doi.org/10.1002/ajmg.a.20260]

  24. Zlotogora, J., Lerer, I., Bar-David, S., Ergaz, Z., Abeliovich, D. Homozygosity for Waardenburg syndrome. Am. J. Hum. Genet. 56: 1173-1178, 1995. [PubMed: 7726174]


Contributors:
Cassandra L. Kniffin - updated : 5/24/2016
Cassandra L. Kniffin - updated : 3/8/2010
Victor A. McKusick - updated : 9/25/2003

Creation Date:
Victor A. McKusick : 6/2/1986

Edit History:
alopez : 07/21/2023
carol : 07/09/2016
carol : 5/24/2016
ckniffin : 5/24/2016
carol : 5/16/2016
ckniffin : 3/15/2010
carol : 3/11/2010
ckniffin : 3/8/2010
mgross : 3/29/2006
terry : 11/3/2004
cwells : 9/25/2003
carol : 1/8/2002
dkim : 12/10/1998
carol : 6/18/1998
mark : 1/26/1998
terry : 1/26/1998
jenny : 9/19/1997
terry : 9/15/1997
terry : 3/26/1996
mark : 3/12/1996
terry : 3/5/1996
mark : 1/30/1996
mark : 1/25/1996
mark : 5/2/1995
mimadm : 11/5/1994
pfoster : 8/18/1994
davew : 7/28/1994
carol : 5/23/1994
terry : 5/13/1994