U.S. flag

An official website of the United States government

GTR Home > Conditions/Phenotypes > BLOOD GROUP, MN

Summary

MN antigens reside on GYPA, one of the most abundant red-cell glycoproteins. The M and N antigens are 2 autosomal codominant antigens encoded by the first 5 amino acids of GYPA and include 3 O-linked glycans as part of the epitope. M and N differ at amino acids 1 and 5, where M is ser-ser-thr-thr-gly, and N is leu-ser-thr-thr-glu. M is the ancestral GYPA allele and is common in all human populations and Old World apes. GYPA, glycophorin B (GYPB; 617923), and glycophorin E (GYPE; 138590) are closely linked on chromosome 4q31. The N terminus of GYPB is essentially identical to that of GYPA except that it always expresses the N antigen, denoted 'N' or N-prime. Antigens of the Ss blood group (111740) reside on GYPB, and recombination and gene conversion between GYPA, GYPB, and GYPE lead to hybrid glycophorin molecules and generation of low-incidence antigens. Thus, the MN and Ss blood groups are together referred to as the MNSs or MNS blood group system. The U antigen refers to a short extracellular sequence in GYPB located near the membrane. Recombination results in 3 glycophorin-null phenotypes: En(a-) cells lack GYPA due to recombination between GYPA and GYPB; GYPB-negative (S-s-U-) cells lack GYPB due to recombination in GYPB; and M(k) cells (M-N-S-s-U-) lack both GYPA and GYPB due to recombination between GYPA and GYPE. Individuals with glycophorin-null phenotypes have decreased sialic acid content and increased resistance to malarial infection (see 611162). GYPA and GYPB are not essential for red-cell development or survival, and GYPA- and GYPB-null phenotypes are not associated with anemia or altered red-cell function (review by Cooling, 2015). [from OMIM]

Genes See tests for all associated and related genes

  • Also known as: CD235a, GPA, GPErik, GPSAT, HGpMiV, HGpMiXI, HGpSta(C), MN, MNS, PAS-2, GYPA
    Summary: glycophorin A (MNS blood group)

IMPORTANT NOTE: NIH does not independently verify information submitted to the GTR; it relies on submitters to provide information that is accurate and not misleading. NIH makes no endorsements of tests or laboratories listed in the GTR. GTR is not a substitute for medical advice. Patients and consumers with specific questions about a genetic test should contact a health care provider or a genetics professional.