Conserved Protein Domain Family
TAF11

?
cl02176: TAF11 Superfamily (this model, PSSM-Id:413227 is obsolete)
Click on image for an interactive view with Cn3D
TATA Binding Protein (TBP) Associated Factor 11 (TAF11) is one of several TAFs that bind TBP and is involved in forming Transcription Factor IID (TFIID) complex
The TATA Binding Protein (TBP) Associated Factor 11 (TAF11) is one of several TAFs that bind TBP and are involved in forming the Transcription Factor IID (TFIID) complex. TFIID is one of seven General Transcription Factors (GTF) (TFIIA, TFIIB, TFIID, TFIIE, TFIIF, and TFIID) that are involved in accurate initiation of transcription by RNA polymerase II in eukaryotes. TFIID plays an important role in the recognition of promoter DNA and assembly of the pre-initiation complex. TFIID complex is composed of the TBP and at least 13 TAFs. TAFs from various species were originally named by their predicted molecular weight or their electrophoretic mobility in polyacrylamide gels. A new, unified nomenclature for the pol II TAFs has been suggested to show the relationship between TAF orthologs and paralogs. Several hypotheses are proposed for TAFs functions such as serving as activator-binding sites, core-promoter recognition or a role in essential catalytic activity. TAF11 interacts with the ligand binding domains of the nuclear receptors for vitamin D3 and thyroid hormone. TAF11 also directly interacts with TFIIA, acting as a bridging factor that stabilizes the TFIIA-TBP-DNA complex. Each TAF, with the help of a specific activator, is required only for the expression of subset of genes and is not universally involved for transcription as are GTFs. In yeast and human cells, TAFs have been found as components of other complexes besides TFIID. Several TAFs interact via histone-fold (HFD) motifs; HFD is the interaction motif involved in heterodimerization of the core histones and their assembly into nucleosome octamers. The minimal HFD contains three alpha-helices linked by two loops and is found in core histones, TAFS and many other transcription factors. TFIID has a histone octamer-like substructure. The TAF11 domain is structurally analogous to histone H3 and interacts with TAF13, making a novel histone-like heterodimer. The dimer may be structurally and functionally similar to the spt3 protein within the SAGA histone acetyltransferase complex.
Links
?
Statistics
?
Accession: cl02176
PSSM Id: 413227
Name: TAF11
Created: 8-Feb-2008
Updated: 24-Nov-2020
| Disclaimer | Privacy statement | Accessibility |
NCBI Home NCBI Search NCBI SiteMap